Please install Yoast, RankMath, or SEOPress to use breadcrumbs.

About Company
KENEX group was founded in 1981and is a designated production unit for cement, building materials and washing equipment by the Ministry of Machinery Industry of the People's Republic of China and the Department of Machinery and Electronics Industry of Henan Province.
Get the latest price? We will reply as soon as possible (within 12 hours)

Platinum Group Metal Ores

Chapter  7  Beneficiation  Practice  of  Non-ferrous  Metallic  Ores

Platinum Group Metal Ores

7.5.1      Minerals and Classification of PGM Ores

In     chemical     terms     the     six     main     platinum     group     elements(PGE),ruthenium,rhodium, palladium,osmium,iridium  and  platinum,belong  to  the  group  VIl  transition  metals,to  which  also belong  iron,nickel  and  cobalt.These  elements  have  long  been  considered,when  grouped  with gold   and   silver,as   “precious   metals”.This,in   fact,is   misleading   because   the   mineralogy   and geochemistry of silver and gold do not correlate with that of PGE.

Also,in   literature,there    are   two    terms    of   reference,including   PGE    and   platinum    group minerals(PGM).From  a  flotation  point  of  view,PGM   is  the  more  common  term.Therefore,the term PGM will be used in this text.The  chemical  similarity  between  the  six  PGE  and  iron,nickel  and  cobalt  accounts  for  the  fact

that they tend to concentrate together as a result of geological processes.This is quite important not only for the formation of PGM ores,but also for beneficiation.

There  are  over   100  different  platinum  group  minerals.Some  of  the  most  common  PGM  are shown  in  Table  7.11.The  stoichiometry  of most  of the  PGM  named  is  known,but  because  these minerals  are  subject  to  a  wide  range  of  element  substitution,as  indicated  in  Table  7.11,there  is little consistency between an ideal formula for the individual minerals and compositions of the given minerals from various locations.

Table 7.11 List of platinum group minerals and their compositions(Srdjan M.Bulatovic,2010)

PGMIdeal formulaOther elements present
AnduoiteRuAs₂(RuOslr)As
ArsenopalladinitePd₈As2.5Sbo.5(PdCu)AsSb
Atheneite(PdHg)₃As(PdHgAuCu)AsSb
AtokitePdSn(PdPt)Sn
BorovskitePd₈SbTe₄(PdPtNFe)SbBiTe
Braggite(PtPd)S(PINiPd)S
CooperitePtS(PtNiPd)S
DaomanitePtCuAsS₂(PICuAs)S
ErlichamaniteOsS₂(OsRhIrPdRu)S
FrooditePdBi₂(PdPt)Bi
Genkinite(PtPd)₄Sb₃(PtPdRhNiCu)SbAsBi
GeversitePISb₂Pt(SbBi)
GuanglinitePd₃As(Pd)As
HollingworthiteRhAsS(RhPdPtLr)AsS
HongshiitePt(Cu)(Pt)Cu
IrarsiteIrAsS(IrRuRhPt)AsS
IridiumIr(IrPtFeOsRhPdNi)
IsoferroplatinumPt₃Fe(PtFeCuNi)
KotulskitePtTe(PdPt)(TeBiSb)
MajakitePtNiAs(PdNiAs)
MoncheitePtTe₃PtPd(TeBi)
NiglitePtSn(PtBiSb)Sn
OmeiiteOsAs₂(OsRuFeNilrCo)As
OsmiumOs(OsIrRuPt)
PalarstanidePd₈ (SnAs)₃(PdPtAuCu)(AsSnSb)
PalladiumPdPdHg
Platiniridium(IrPt)(IrPtFeOsCuNi)
RhodiumRhRhPt
RutheniumRuRulrRhOsPdFe
Ruthenosmiridium(IrOsRu)(IrRuOsPtRhFeNiPd)
PGMIdeal formulaOther elements present
SperylitePtAs₂(Pt)(AsSb)
TemagamitePdHgTe₃(PdHg)(TeBi)
VysotskitePdS(PdFePt)
Xingzhongite(IrCuRh)S(IrCuRhFePbPtOs)S
ZvyagintsevitePd₃Pb(PdPtFeNiCu)Pb

In  general,PGM  are  concentrates  in  the  crust  found  in  two  different  ways:(1)by  leaching  the metal-rich   lava(mantle)deposited   into   the   crust,which   is   known   as   chemical   weathering, especially  in  a  hot  climate  where  silica  and  magnesia  are  leached  away.This  leaves  a  residue enriched   in   iron   and   nickel,which   contains   the   PGM   elements;(2)melting   a   portion   of   the mantle may give rise to ultramafic or basalic lava,which is then squeezed upwards as a result of pressure  within  the  earth  to  intrude  the  crust  or  extrude  lava  on  the  surface.This  magma  is  not particularly  rich  in  nickel   or  PGM;however,because   of  their   siderophile  nature,the   group  VⅢ  metals are also chalcophile in nature,that is they prefer to form bonds with sulphur than oxygen.

These  sulphide  deposits  are  able  to  concentrate  these  metals  by  a  factor  of  100-1000g/t  and form  PGM  deposits,together  with  precious  metals,nickel  and  copper.Almost  always  the  PGM deposits  contain nickel minerals.

The   PGM   deposits    can   be   classified    into   the    following   two   groups:(1)PGM-dominated deposits      and(2)nickel-copper-dominated      deposits.

According  to  the  processing   characteristics  of  PGM-dominated  deposits,they   can  be   divided into    the    following     three    groups:(1)Morensky     type,(2)hydrothermal    deposits     and(3)placer deposits.

7.5.2    Recovery    of    Platinum    Group    Minerals

The  recovery  of PGM  minerals  is  a  subject  which  has  received  very  little  ttention  in  published literature.This  is  mainly  due  to  the  fact  that  major  PGM  producers  are  surrounded  by  secrecy, therefore,neither  commercial  processes  nor  research  work  on  recovery  of  PGM   is  publically available.From   a   processing   point   of   view,PGM-containing   ores   can   be   divided   into   three general  groups  as   follows:ores   amenable  to  gravity  preconcentration,ores   amenable  to   flotation and ores that can only be treated using a hydrometallurgical route.

7.5.2.1   Ores   Amenable   to   Gravity   PreconcentrationThe  most  important  features  of  these  ores  are:(1)the  valuable  constituents  occur  as  minerals  of high  density,(2)they  do  not  have  middlings  and(3)the  grain-size  distribution  falls  in  a  region where a gravity technique can be adopted successfully.Ore types where gravity preconcentration is used   include    Alaskan-type   deposits,alluvial    and   fossil    placer   deposits.In    the   Alaskan-type deposits,the     principal      PGM      minerals      include      Pt-Fe      alloys,isoferroplatinum(Pt₂Fe)and

platiniridium(Ir,Pt).There  are  several  producing  plants  that  process  these  ores,mainly  in  rural mountain  areas(USSR).The  alluvial  deposits  were  treated  in  the  early  20th  century.The  PGM in  these  deposits  occur  as  alloys,usually  as  Pt  rich  in  the  form  of  loose  grains  and  nuggets.The PGM  ores  from  Alaska  contain  magnetite,which  is  removed  before  gravity  preconcentration.The fossil  placer  deposits  are  in  fact  gold-bearing  conglomerates  that  carry  small  amounts  of  PGM, together  with  gold,uranium  and  other  heavy  minerals.Some  of  the  fossil  placer  deposits  contain about  22  PGM   species,including  Ir-Os-Ru  alloys,sperrylite  and  isoferroplatinum.

7.5.2.2       Ores  Amenable to  Flotation

Based  on  flotation  processing  characteristics,these  ores  can  be  divided  into  the  following  major groups:

(1)PGM  sulphide-dominated  deposits.In  these  deposits,PGM  are  in  general  associated  with base   metal   sulphides,as   grain   boundaries   between   sulphides   and   silicates.In   some   cases,the PGM may be present in  solid  solution  with  sulphides.From  these  deposits,PGM  are  recovered  in a  bulk  Cu/Ni/Co/PGM  concentrate  that  is  further  processed  using  pyrometallurgical  techniques.  In  many  cases  these  ore  types  contain  floatable  non-opaque  gangue  minerals,including  talc, chlorites,etc.

(2)PGE-dominated  deposits.This  in  fact  is  a  term  for  stratiform  deposits  containing  sparse sulphides   and   PGM    concentration   in   a   range   between    5g/t   and    30g/t.These   deposits    are characterized by a variety of different gangue minerals and high content of PGM sulphide minerals, such     as     cooperate(PIS),braggite     [(PtPd)S]and     vysotskite(PdS).Note     that     these     minerals are  rare  and  non-existent  in  most  PGM-bearing  copper-nickel  sulphide  deposits.

7.5.2.3  Copper-Nickel  and  Nickel  Sulphide  Deposits  with  PGM  as  a  By-Product

Prior   to   discovery   of   the   PGM   Morensky   Reef   deposit,copper-nickel   deposits   in   Ontario, Canada,and  the  Norilsk(USSR)were  the  principal   sources   of  PGM   production.However,about 40%of the  world’s  production  of  PGM  comes  from  different  Cu-Ni  deposits.The  major  deposits from this group are discussed in the following sections.

(1)The  Sudbury  area   in  Ontario,Canada.Mineralogical  examination  of  these  ores  revealed  a variety   of   PGM    and   their   associations.The    michenerite(PdBiTe)and   sperrylite(PtAs₂)are    the most   common   platinum/palladium   minerals   for   many   deposits   in   the   Sudbury   region.Other minerals   of   economic    value   found    in    these   deposits    are   moncheite(PtTe₃),froodite(PdBi₂), inszwaite(PtBi₂),irarsite(IrAsS),niggliite(PISn)and            mertieite(PdSb₃).Most             of            these minerals  are  liberated  at  a  relatively  coarse  size(40-200μm).(2)The    Norilsk    Talnakh    ore    in     Russia.In    this    area,the    PGM     are    distributed    in:1)  disseminated    sulphides,mostly     in    pyrrhotite,chalcopyrite     and    pentlandite.The     predominant  platinum    minerals     are     Pt-Fe    alloys,cooperite(PIS)and     sperrilite(PtAs₂);2)massive     sulphide ores    where     the     predominant     PGM      are     Pt-Fe     alloys,rustenburgite(Pt₃Sn)and     sperrilite (PtAs₂),occurring   in   fine   inclusions   in   chalcopyrite   and   pyrrhotite;and   finally;3)disseminated

veins and brecia ores that may consist of mainly chalcopyrite or pyrrhotite.The PGM in these ores is    present     as    Pt-(cooperite)and     Pd-(vysotskite)sulphides.

(3)Pechenga   Cala   Peninsula(USSR).The   ores   from   this   region   are   of   tholeiitic   intrusions hosting  Cu-Ni  sulphides  with  relatively  low  PGM  content.In  these  ores,most  of the  palladium  is associated   with    pentlandite,where   the    platinum   and    rhodium    are   mainly    associated    with pyrrhotite.Only  sperrilite  and  Pt-Fe  alloys  have,so  far,been  found  in  these  ores.

7.5.2.4   Chromium   Deposits   with   PGM

There are a number of deposits of this type with different origins.Most economical PGM chromite deposits are described as follows:

(1)Podiform  chromite  deposits  occur  in  ultrafamic  bodies  referred  to  as  alpine  types  and  are located  in  Tibet  and  North-western  China.

(2)Stratiform   chromite   deposits    occur   in    different   layered   intrusions,such   was    Bushveld (South   Africa)and   the    Great    Dyke(Zimbabwe).The   best   known    chromite    deposit,with    a number  of  operating  plants,is  the  UG2  Complex  located  below  the  Morensky  Reef.It  ranges  in thickness from  15cm to  255cm and dips at an angle of 5°-70°towards the centre of the Bushveld Complex.Mineralogically,it      consists      mainly      of     chromite(60%-90%)or      thopyroxene(5%- 25%)and  plagioclase(5%-15%)with   only   trace   amounts   of  base   metal   sulphides.

PGM   are    usually   closely    associated   with    sulphides,such   as    laurite(RuS₂),cooperate(PtS), braggite         [(PtPd)S],Pt-Fe         alloys,sperrilite(PtAs₂)and         vysotskite(PdS).

The average chemical analyses of the PGM  from various areas are shown in Table 7.12.

Table 7.12 Average chemical analyses of PGM from various areas of the UG2 deposits

AreaGroupAssays/g ·t⁻¹
PtPdRhRuIrAuTotal
 MarikomaA11.581.290.490.72<1.0<0.24.08
A23.090.770.510.90<0.5<0.25.27
 BritsA32.910.990.281.17<1.00.065.41
A42.851.340.491.06<0.5<0.035.77
HoekfonteinA52.550.230.400.86<0.5<0.14.04
South-western region2.611.870.490.990.050.176.18
Bushveld complexA2.671.530.510.93<0.50.035.68
B3.042.500.561.00<0.50.077.17
MoandagchoekC4.333.920.951.220.160.0710.65
D5.253.530.731.40<0.1<0.110.91
North-eastern regionE3.143.090.810.970.450.098.55
Bushveld complexF4.312.430.911.510.090.029.30

7.5.3     Flotation     of     PGM-Containing     Ores

There  is  little  published  data  on  the  flotation  of  PGM-containing  ores.Development  work  on beneficiation  of PGM  ores  has  been  conducted  by  mining  companies  themselves  and  by  a  few research  organizations  close  to  the mining  companies,which produce  PGM.Many  operating  plants treating  PGM  ores  use  conventional  flotation  techniques  and  the  metallurgical  results  are  below optimum in a number of these plants.

Each ore type requires different flowsheets and reagent schemes,which is dictated by the mineral composition of the ore and the geological setting,as well as the type of PGM carrier minerals.The following sections discuss the flotation properties and practices ofthe different ore types.

7.5.3.1   Flotation   Properties   of   PGM   from   Sulphide-dominated   Deposits

Most  of the  current  commercial  operations  that  treat  PGM  from  sulphide-dominated  deposits  are located   in   South   Africa(Morensky    Reef),Stillwater    mines(Montana,USA)and   Lac    des    Illes (Ontario,Canada).From  a  processing  point  of  view,most  of  these  ore  types  contain  hydrophobic  gangue   minerals,including   talc,which   has   a   negative   effect   on   PGM   recoveries.Other   major factor  that  affects  flotation  recovery  of  PGM  is  the  presence  of  a  variety  of  sulphide  minerals, including      pyrrhotite,pentlandite,chalcopyrite,violarite      and      pyrite,where      the       PGM      are associated  with   all   sulphides.In   addition,in   some   operating   plants,a   portion   of  the   PGM   is represented   by   braggite,vysotskite,moncheite   and   Pt-Fe   alloys.

In   general,the   flotation   properties   of   PGM   from    sulphide   -dominated   deposits   are   very dependent  on the ratio  of the  individual  sulphide  minerals  present  in  the  ore  and  the  nature  and occurrence of hydrophobic gangue minerals present in the ore.

Each    of    the    sulphide     minerals,which    are    PGM     carriers(i.e.pyrrhotite,pyrite,pentlandite, etc.)have  different  flotation  properties  under  some  flotation  conditions.The  selectivity  between sulphide minerals and gangue minerals is relatively poor in principle,and in the majority of cases, a hydrophobic gangue depressant has to be used.

The   flotation   behaviour   of  the   individual   sulphide   minerals   contained   in   PGM   sulphide- dominated ores can be described as follows:

Pyrrhotite is a relatively  slow floating mineral,especially monoclinic pyrrhotite,which is usually present   in   these   ore   types.The   floatability   of   pyrrhotite   also   decreases   when   using   certain hydrophobic  mineral   depressants,such   as   guars   and   dextrins.The   flotation   of  pyrrhotite   may improve  with  small  additions  of  copper  sulphate(CuSO₄).

Chalcopyrite  and  pentlandite  float  well  using  a  xanthate  collector  and  in  certain  operations,the recovery can reach greater than 90%.

Violarite is the least floatable mineral of all the sulphides and represents a major loss of PGM in the flotation tailing from a number of operations.

Fig.7.11  shows  the  rate  of  flotation  of  different   sulphides.In  these  experiments,xanthate  was

used as the primary collector with dithiophosphate as the secondary collector.

One    of   the    major    problems    associated    with beneficiation   of   PGM    from    sulphide    -dominated deposits  is  the  presence  of hydrophobic  gangues,such as     talc,chlorites,carbonates     and      aluminosilicates.  The  concentrates  produced  in  most  of  the  Morensky Reef   operations(South   Africa)varies   from   80g/t   to 150g/t    of    combined    PGM,where    most    of    the contaminants   are    silicates,aluminosilicates    and   talc (i.e.up    to    60%).The    major    hydrophobic    gangue depressants  used  are  carboxymethyl  cellulose(CMC) and different modifications of guar gums.

In      recent      years,a      new      line      of      hydrophobic gangue      depressants       were      developed,based       on      a mixture     of     guar      gums      and      low-molecular-weight

polyacrylates     modified     with     organic     acid,which     are extremely          effective.      With      the      use      of      these depressants,the  grade  of  the   PGM   concentrate   could   increase   from   100g/t   up  to  400g/t  without any  loss  in  recovery.

Flotation time/min Fig.7.11  Rate  of  flotation  ofdifferent  sulphides

7.5.3.2   Reagent    Practice    in    Flotation   of    PGM   Sulphide-dominated    Ores

There   is   very   little   published   information   available   on   flotation   of   PGM   ores   in   general.Most operations   treating   PGM    sulphide-dominated    ores   have    similar   reagent    schemes,with   maybe   a different   choice   of   hydrophobic    gangue    depressants.Most    of   these    plants    use    CuSO₄as   the principal   sulphide   activator.In  the  past   10   years,extensive   research  was  carried  out  and  directed

towards  finding  better  gangue  depressants.

The   principal    sulphide   activator   used   in   most operating    plants    is    small    additions    of    CuSO₄, normally  added  to the  secondary  grind  and  scavenger flotation      stages.Although      CuSO₄improves      PGM recovery,it   may   also   reduce   the   concentrate   grade because  an  excess  of  CuSO₄will  activate  the  gangue minerals.Fig.7.12    shows    the    effect    of    level    of CuSO₄on     the     PGM     grade-recovery     relationship from   the   Morensky   Reef   Plant    A    ore.In   these experiments,carboxymethyl               cellulose(CMC)was used  as  the  main   gangue  depressant.

Total PGM grade/g·t¹ Fig.7.12 Effect of level of CuSO₄on the PGM grade-recovery relationship

In      recent      years,a      number      of      alternative activators  were  examined.It  was  found  that  organic acids   along   with   a   mixture   of   organic   acid   and thiourea      can      replace       CuSO₄with       significant improvement  in  PGM  recovery  and  selectivity.The  results  obtained  using  different  activators  on the Morensky ore are compared in Table 7.13.The highest concentrate grade and PGM recoveries were  achieved using  a mixture  of oxalic  acid  and  thiourea.The use  of CuSO₄as  an  activator was examined in relation to the point of addition and type of depressant used.It was concluded that the point of reagent addition played an important role in PGM recovery.

Table 7.13 Effect of different activators on PGM flotation and upgrading

ActivatorProductWeight/%Assays/g ·t¹Distribution/%
PtPdAuPtPdAu
  CuSO₄=220g/tPGM cleaner concentrate1.6712061.88.2670.067.060.0
PGM rougher concentrate6.9035.518.22.2085.381.466.3
PGM rougher tail93.100.450.310.0814.718.633.7
Feed(cale)100.002.871.540.23100.0100.0100.0
 Oxalic acid/DETA(80:20 ratio)=350g/tPGM cleaner concentrate1.1019810113.274.270.560.6
PGM rougher concentrate5.7044.423.82.7788.588.467.8
PGM rougher tail94.30.350.190.0811.511.632.2
Feed(cale)100.002.871.540.23100.0100.0100.0
 Oxalic acid/thiourea (60:40 ratio)=350g/tPGM cleaner concentrate0.8725013219.975.074.063.0
PGM rougher concentrate4.0266.635.93.7892.393.369.1
PGM rougher tail95.980.230.110.077.76.730.9
Feed(cale)100.002.901.550.22100.0100.0100.0

The  primary  collector  used  in  PGM  flotation  is  xanthate.As  a  choice  of  secondary  collectors, dithiophosphates  and  mercaptans  are  used  in  some  operating  plants.The  type  of  xanthate  has  a significant  effect  on  PGM  recoveries.Studies   conducted  on  the   Stillwater   Complex  by  the  US Bureau  of Mines  indicated  that  the  type  of  xanthate  had  a  significant  effect  on  PGM  recovery (Table  7.14).The  highest  PGM  recovery  was  achieved  using  sodium  amyl  and  sodium  isobutyl xanthate.Using   a   mercaptan    collector   alone   gave   poor   PGM   recovery.However,when   using xanthate with  mercaptan,substantial  improvement  in  PGM  recoveries  was  achieved.

Table 7.14 Effect of type of xanthate on PGM recovery from the Stillwater ore(USA)
 

Types of xanthateConcentrateTailing
Assays/g ·t⁻¹Distribution/%Assays/g ·t⁻¹Distribution/%
PtPdPtPdPtPdPtPd
K-amyl xanthate34.189.964541.244.963646
Na-amyl xanthate34.280.683630.623.721737
Na-isobutyl xanthate31.077.581650.613.701935
Mercaptan55.8114.753351.556.514765
Na-isobutyl xanthate+ mercaptan31.083.79080 一 一1020

In recent  studies,a new  line  of PGM  collectors  had been  developed  known  as the  PM  series.

These  collectors  are  an  ester-modified  mixture  of  xanthate   +mercaptan.The   reaction  product forms  an  oily  greenish-colored  liquid.The  results  obtained  using  the  PM  series  of  collectors  are shown  in  Table   7.15.High  PGM  recovery  was  obtained  using   a  combination  of  sodium   amyl xanthate plus collector PM301.Collector PM306 was the most selective collector from the PM300 series.

Table 7.15   Effect of collectors from the PM series on PGM recovery from the Morensky operation A ore

CollectorPGM cleaner concentratePGM rougher concentrate
Assays/g ·t⁻¹Distribution/%Assays/g ·t⁻¹Distribution/%
PtPdPtPdPtPdPtPd
Na-isobutylxanthate+R347711060.5716536.217.884.382.2
Na-isobutylxanthate+PM30116098.582.380.665.236.194.494
Na-isobutylxanthate+PM305180100.376.67445.324.187.486.8
Na-isobutylxanthate+PM30624412873.371.867.237.786.684.3
Na-isobutylxanthate+PM308120.562.373.170.037.219.685.584.0

Choosing a depressant for hydrophobic gangue depression is dependent on the type of gangue present  in  the  ore.During  treatment  of  ores   that  contain  talc,carboxymethyl  cellulose(CMC)is normally   used    as   the    gangue   depressant,or    in    some   operations,guar    gum   +CMC.Typical examples  of  talc-containing  ores  are  the  Stillwater  Complex(USA)and  Lac  des  Illes(Canada).  Both operations use CMC for talc depression.In the Stillwater operation,the additions of CMC are relatively   high(i.e.up    to    600g/t)and   are    added    to   the    ball    mill,the   PGM    roughers    and cleaners.

Laboratory and pilot plant studies on the Stillwater ore showed that the molecular weight of the

CMC   affected   both    PGM   grade    and   recovery.  Fig.7.13  shows  the   effect  of  molecular  weight   of CMC  on  PGM  grade-recovery  relationship.The  best results  were  obtained  using  CMC  with  an  average 300000     molecular     weight,corresponding     to     a viscosity of over 3000 cps.

Studies conducted by the University of Cape Town (South  Africa)researchers  indicated  that  the  point of CMC addition had a significant effect on sulphides (PGM   carriers)grade   and   recovery.It should be noted that in several operating plants from  the  Morensky  Reef  and   Stillwater  Complex, from which plant metallurgical results are available, the  total  PGM  recoveries  ranges  from  82%to  85% PGM.The  grade  of concentrate  from  the  Morensky  operations  ranges  from  80g/t  to  about  120g/t (Plants  A  and  B).Most  of  the  contaminants  are  silicates  and  talc.

7.5.3.3 Reagent Practice in Flotation of Cu-Ni and Ni Ores with PGM as the by-productIn the  flotation  of Cu-Ni  and  Ni  ores,the  emphasis  is  usually  placed  on  Cu-Ni  and  Ni  recovery and concentrate grade,and most of the research on these ores was directed towards improvement in Cu-Ni  recovery  and  pentlandite-pyrrhotite   separation,whereas  little  or  no  attention  was  paid  to improvement  in  recovery  of  PGM.In   operations   from  the   Sudbury   Region(Canada),PGM  are recovered   as   by-products   of  Cu-Ni   concentrates.The   idealized   flowsheet   of  the   Inco   Metal (Sudbury,Canada)PGM  recovery   flowsheet   is   shown   in  Fig.7.14.

Laboratory  studies  conducted  on  Falconbridge  ores,also  from  the  Sudbury  Region,showed that PGM recovery can be improved with the use of a secondary collector.Fig.7.15 shows the effect of level   of  secondary   collector   on   PGM   recovery   in   a   Cu-Ni   bulk   concentrate.The   highest   PGM recoveries  were   achieved  using  isobutyl  dithiophosphate  as  the   secondary   collector.

Fig.7.15 Effect of secondary collectors on PGM recovery in a bulk Cu-Ni concentrate

Plant  data  from  the  Copper  Cliff  Mine  showed  that  about  85%of  the  platinum  was  recovered  in a   Cu-Ni    concentrate,most   of   which    was    from   the    nickel   concentrate.The    plant    metallurgical results  are  shown  in  Table  7.16.Similar  plant   results  were  obtained  at  other  Inco  operations.

Table 7.16 Platinum recovery in the Copper Cliff plant

ProductWeight/%Assays/%(g ·t⁻¹)Distribution/%
CuNiPtCuNiPt
Copper concentrate13.029.20.911.8083.03.017.0
Nickel concentrate29.02.2812.83.0414.085.065.0
Tails58.00.930.220.413.012.018.0
Feed100.004.584.421.39100.0100.0100.0

In  the Norilsk  Region,research  work  was  carried  out  on  Oktyabrski  disseminated  Cu/Ni-PGM  ore.This  ore  contains  high-grade  PGM,most  of  which   is   represented  by  palladium.The  results  using different  collectors   are  shown  in  Table   7.17.Improvement  in   overall  PGM  recoveries  was   obtained using  xanthate   as  the  primary   collector   and   dithiophosphate   as  the   secondary   collector.A   slight improvement in metallurgical results was achieved when using mercaptan as the secondary collector.

Table 7.17 Effect of secondary collectors on PGM from theNorilsk(Russia)disseminated  Cu/Ni-PGM  ore

ProductWeight/%Assays/%(g ·t⁻¹)Distribution/%
CuNiPtPdCuNiPtPd
CuCl concentrate10.2529.60.86.555.092.09.113.932.2
Ni/PGM concentrate5.582.012.855.01883.479.475.060.0
Bulk concentrate15.8319.885.0326.95101.995.488.588.992.2
Bulk flot tail84.170.180.120.631.624.611.511.17.8
Head(cale)100.003.30.94.817.5100.0100.0100.0100.0
CuCl concentrate10.6030.30.75.849.594.59.212.930.7
Ni/PGM concentrate6.451.3211.4158.98180.92.580.080.168.0
Bulk concentrate17.0519.344.8125.9298.9797.089.293.098.7
Bulk flot tail82.950.130.120.400.273.010.87.01.3
Head(cale)100.003.40.924.7517.1100.0100.0100.0100.0
CuCl concentrate11.4927.51.26.152.090.315.114.935.4
Ni/PGM concentrate6.291.169.8352.4165.52.168.070.160.2
Bulk concentrate17.7818.194.2622.4793.0592.483.185.095.6
Bulk flot tail82.220.310.180.860.927.616.915.04.4
Head(cale)100.003.50.914.717.3100.0100.0100.0100.0

7.5.3.4  Reagent  Practice  in  Flotation  of  PGM  from  Chromium-containing  Ores

The major problem associated with processing of high-chromium ores includes the following:

(1)High   chromium   content   in   PGM    concentrates    has    a   negative    effect    on    pyro-and hydrometallurgical processing.

(2)The  major   carriers   of  PGM   are   a   variety   of  minerals   and   alloys,where   the   flotation  properties of the PGM minerals and alloys are not well defined.These ores have very little to no sulphides present that  are  PGM  carriers.In recent years,extensive research has been conducted on these ore types with the objective of finding a more effective PGM collector and chromium depressant.Research work was conducted on UG2  high-chromium   ore.Detailed   chemical   analyses   of  the   highchromium   ore   used   in   this research  are  presented  in  Table  7.18.

ElementPlatimumPalladiumNickelSulphurCopperChromiumIronGold
PtPdw(Ni)w(S)w(Cu)w(Cr)w(Fe)Au
Assays2.06g/t1.29g/t0.100.040.01120.018.5<0.02g/t

The PGM carriers in this ore include a variety of PGM minerals(sperrilite)and its alloys.The main   problems   identified   associated   with   processing   this   ore   type   were:(1)poor   concentrate grade;(2)low rate of PGM flotation;(3)excessive chromium reporting to the PGM concentrate;

(4)high   collector   consumption.The   reason   for   high   collector   consumptions   was   the   presence   of small,but    significant    quantities    of    clay-like    slimes.The    high    collector    consumption    was    the principal  reason  for  the  excessive  amount  of  chromium  reporting  to  the  PGM  concentrate(mainly as    fines).

Types   of   secondary    collectors   were    extensively    examined   in    research   work.Fig.7.16    shows the effect of secondary collectors on the PGM grade-recovery relationship.The highest PGM recovery   was    achieved    using    collector   PM443,which    is    an    amine    +ester-modified   xanthate.  Among  the  chromium  slime  depressants  evaluated,modified  mixtures   of  organic  acids,RQ depressants and a low-molecular-weight polyacrylic acid +pyrophosphate mixture were there.  The effect of different chromium depressants on chromium assays of the PGM concentrate are illustrated    in    Fig.7.17.

Significant  improvement  in  chromium  depression  has  been   achieved  using   depressants  from  the KM  series,representing  mixtures  of  organic   acid   and  low-molecular-weight  acrylic  acid  mixtures.  It  is,therefore,possible  to  depress  chromium  during  PGM  flotation  and  at  the  same  time  reduce collector  consumption.The  relationship  between  the  level  of  collector  and  level  of  KM3  depressant is    shown    in    Table    7.19.The    data    shown    in    this    table    demonstrate    that    overall    collector consumption   can   be    reduced   by    50%with   the    use   of   slime/chromium    depressant,KM3.At   the same   time,the    chromium   assays    in   the    PGM   concentrate    reduced   from    3.8%to    0.9%Cr.It   is obvious  that  high  collector  consumption  is  responsible  for  high  chromium  content  in  the  cleaner concentrate.

Table 7.19 Effect of depressant KM3 on collector consumption duringPGM flotation from UG2 high-chromium ore

Reagent/g ·r¹PGM cleaner concentratePGM rougher concentrate
Assays/%(g ·t⁻¹)Distribution/%Assays/%(g ·t⁻¹)Distribution/%
CollectorDepressantPtPdCrPtPdCrPtPdCrPtPdCr
330080.154.33.857610.421.013.07.382804.1
3302009060.92.560640.228.217.46.084822.6
200200110712.270710.233.220.54.286841.5
20020012077.62.075760.1538.323.93.888871.3
160400135.186.20.977770.0240.225.22.590890.14

Comparative  continuous  locked  cycle  tests  were  conducted  using  the  reagent  scheme  currently used  in  an  operating  plant  and  the  new  reagent  scheme  was  developed  during  the  research  on  ore from   the   Waterval   plant(South   Africa).These   results   are   compared   in   Table   7.20.

Table 7.20 Comparison of results using the new and standard plant reagent scheme from Waterval Plant

Reagent schemeProductWeight/%Assays/%(g ·t⁻¹)Distribution/%
PtPdCrPtPd
 Newly developed schemePGM Cl concentrate2.0889.5455.541.0289.086.1
PGM comb tail97.920.240.1911.013.9
Feed(cale)100.002.101.34100.0100.0
 Standard pant schemePGM Cl concentrate2.0186.0149.082.7279.876.7
PGM comb tail97.990.450.3120.223.3
Feed(cale)100.002.161.29100.0100.0

A  substantial  improvement  in  metallurgical  results  was  achieved  using  the  new  reagent   scheme.

This  new  reagent   scheme   included  collector  PM443   and  depressant  KM3.The  collector  type  plays  a  significant  role  in  PGM  recovery  from  high-chromium  ores.Collectors were  examined  in  detail  on  several  high-chromium   ores,where  new   collectors  from  the   PM  series were   included    in   the    evaluation.These   collectors    are   ester-modified    mixtures   of   xanthate    and dithiophosphates.The    results    are     presented    in    Table     7.21.The    highest    PGM     recovery    was achieved  using  a  combination   of  isobutyl  xanthate   and  collector  PM303.

Table 7.21 Effect of type of collector on PGM rougher-scavenger flotation from high-chromium ores

Collector typePGE rougher concentratePGE rougher+scavenger concentrate
Assays/g ·t⁻¹Distribution/%Assays/g ·t⁻¹Distribution/%
PtPdPtPdPtPdPtPd
PAX①110.796.855.154.345.540.481.280.3
PAX①R3477②120.498.566.364.244.339.884.883.5
PAX①R404②110.197.064.362.146.341.185.283.6
PAX①PM301116.694.570.270.042.338.088.586.2
PAX①PM305113.896.380.280.043.339.692.591.1
SIBX①PM303122.497.982.281.044.640.192.392.1

7.5.3.5       Flotation  of Oxide  PGM  Ores

There are only a few known oxidized PGM deposits in which the ore is in the development stage.These deposits  can  be  found  in  Brazil  and  Australia.The PGM in these ores is usually represented by different PGM  minerals  and  alloys,finely  disseminated  in  a gangue   matrix.    Using   a   flotation   method   with conventional  reagent  schemes,results  in  low  PGM recoveries,ranging       from       65%to       70%PGM.  Recent  studies  conducted  on  an  ore  from  Brazil indicated   that    a   mixture    of   organic    acid   and thiourea has a positive effect on PGM recovery from oxidized ores.

Fig.7.18 shows the effect of organic-acid-modified thiourea on PGM flotation from oxidized PGM ore.This data show that substantial improvement in PGM grade and recovery was achieved using organic-acid-modified thiourea.

7.5.4     Plant Practice in Treatment of PGM Ores

In   contrast   to   other   sulphide-treatment   flowsheets   and   reagent   schemes,which   are   relatively simple,the  flowsheet and reagent  schemes  for treatment  of PGM ores can be highly complex,and varies from one ore type to the next.

In general,the type of flowsheet used to treat PGM ores largely depends on the type of ore.For example,ores  that  are  sulphide  dominated  have  the  simplest  flowsheet  but  relatively  complex reagent  scheme.Chromium-containing  PGM  ores  have  a  complex  flowsheet  but  relatively  simple

reagent  scheme.

7.5.4.1  Flowsheets  for  Treatment  of  Sulphide-dominated  PGM  Ores

A generalized flowsheet for treatment of sulphide-dominated PMG ores is presented in Fig.7.19.

There  can  be  some  variation  in  this  flowsheet,such  as(1)retreatment  of  the  cleaner  tailings;

(2)regrinding  the  scavenger  concentrate;(3)the  number  of  cleaning   stages.This  flowsheet  is used in several operations from the Bushveld Complex(South Africa),Stillwater Complex(USA) and  Lac   des   lles(Canada).

Fig.7.19   Generalized   flowsheet    for   treatment    of   sulphide-dominated   PGM    ores(Srdjan   M.Bulatovic,2010)

7.5.4.2      Flowsheets     for     Treatment      of     Cu-Ni-containing       PGM      Ores

These   flowsheets   are   usually   designed   for   treatment   of   Cu-Ni    ores    with    the   PGM   being   recovered as  a  by-product.A  typical  flowsheet  used  to  treat  Cu-Ni-containing  PGM  ores  is  shown  in Fig.7.20.The     configuration     of     these     flowsheets     may      vary     considerably,depending     on     the      amount and type of pyrrhotite present in the ore.In some cases,where the ore has a high PGM value contained in the pyrrhotite,an additional PGM recovery stage is required.

7.5.4.3  Flowsheet  Used  for  Treatment  of  High-chromium  PGM-containing  Ores

These     flowsheets      are     specifically      designed     to      maintain     the      chromium     content      in     the      PGM concentrate  as  low  as  possible,since  the  chromium  is  an  unwanted  impurity.The  generalized flowsheet for treatment of high-chromium PGM-containing ores is shown in Fig.7.21.Usually,these     flowsheets      include      a      two-stage     PGM      flotation.In      stage      1,a      high-grade      PGM concentrate   is   recovered   after   coarse   grinding.The   rougher   tailing   is   reground   followed   by   the   stage 2    of    PGM    flotation     and    upgrading,where     a    low-grade     concentrate    is     recovered.

7.5.5 Reagent Schemes Used to Treat PGM-Containing OresThe  reagent  schemes  used  for  treatment  of  PGM-containing   ores  varies  considerably  and  depend largely  on  the  type  of  ore  being  treated.In   some  operations,emphasis  is  placed  on  maximizing  the PGM   recovery,while   a    low-grade   concentrate   is   maintained.Table    7.22   lists   the    ore   type   and reagent  scheme,along  with  metallurgical  results  achieved  in  some  PGM  operations.

Table 7.22 Ore type,reagent scheme and metallurgical results fromoperatingplants(SrdjanM.Bulatovic,2010)

Name of operationOre type/reagent scheme/metallurgical results
     Amplats-Mine No.1 South Africa, Morensky Reef Ore:Sulphide-dominated PGM ore composed of Cu,Ni,pyrrhotite and some pyrite. This ore contains a fair amount of floatable gangue minerals.Grind:To a Kgo of about 105μm.Reagents:CuSO₄=200-300g/tCMC①=200-400g/tamyl xanthate =100-250g/tdithiophosphate =40-80g/tMetallurgy:total PGM concentrate grade =70-85g/t PGM recovery =82%-85%
    Amplats-Mine No.2 South Africa, Morensky Reef Ore:Sulphide-dominated PGM ore containing nickel,pyrrhotite and a little copper. Floatable gangue was dominated by tale and Chlorites.Grind:To a Kgo of 87μm  Reagents:CuSO₄=100-200g/tdibutyl xanthate =320g/tmodified guar gum =200-250g/tMetallurgy:90-100g/t total PGM in concentrate PGM recovery =80%-82%
    Amplats -Mine No.3 South Africa, Morensky ReefOre:Sulphide-dominated PGM deposit containing Cu/Ni and mixed pyrite-pyrhotite. The main floatable gangues are calcite,chlorites with lesser tale. Grind:Kgo=95μmReagents:CuSO₄=100-150g/tisopropyl xanthate =150g/tguar =150-200g/tmercaptan =30-40g/tMetallurgy:total PGM in concentrate =110-120g/t PGM recovery =84%-86%
Continued Table 7.22
Name of operationOre type/reagent scheme/metallurgical results
    Stillwater complex Montana,USAOre:Sulphide-dominated PGM-containing Cu,Ni associated with PGM. Principal gangue floatable mineral is talc.Grind:K₈o=115μmReagents:CMC=400-600g/tsodium amyl xanthate =80-150g/tdithiophosphate =20-40g/tMetallurgy:total PGM in concentrate =300-600g/t PGM recovery =86%-88%
     Norilsk complex Siberia,RussiaOre:Massive sulphide Cu/Ni ore with high PGM content.The bulk of the PGM is contained in pentlandite and monoclinic pyrrhotite.Main gangue minerals are serpentine and pyrrhotite. Grind:Kgo=74μmReagents:lime =200-300g/tCuSO₄=0-300g/t;xanthatemixture =40-60g/taerofloat =20-30g/t  Metallurgy:grade is variable PGM recovery =70%-85%
     UG2 Morensky Reef Plant AOre:PGM dominated with some chromium.Main gangue minerals are calcite,silicate and some aluminosilicate.The ore contains a moderate amount of clay-like slimes.Grind:K₈o=85-100μmRegrind:regrind the middlingsReagents:potassium amyl xanthate =300-400g/tdithiophosphate=30-50g/tguar gum =50-100g/tMetallurgy:total PGM in concentrate =300-400g/t PGM recovery =80%-84%
     UG2 Morensky Reef Plant BOre:PGM-dominated ores-with very little sulphides.Main gangue minerals include silicate,mica,aluminosilicate and some chromium. Grind:Kgo=95μmRegrind:cleaner tailingsReagents:sodium isobutyl xanthate =280-350g/tdithiophosphate =50-60g/tCuSO₄=50-100g/tguar gum =50-100g/tMetallurgy:total PGM in concentrate =180-200g/t PGM recovery =80%-82%
Name of operationOre type/reagent scheme/metallurgical results
         Barrier Reef Plant WF1Ore:high-chromium PGM ore.Main gangue minerals are chromite with some silicates,calcite and clay-like slimes. Grind:K₈o=150μm for stage 1K8o=90μm for stage 2Regrind:cleaner tailingsReagents:xanthate mixture =250-300g/t mercaptan =30-50g/tmodified guar =50-100g/t CuSO₄=50-100g/tMetallurgy:Total PGM in concentrate =80-110g/t at 2.75%Cr₂O₃ PGM recovery =83%
     Amplats Barrier Reef Plant WF2Ore:high-chromium PGM ore.Dominant gangue minerals are chromite with some non-opaque gangue.Ore contains moderate amount of clay-like slimes.Grind:K₈o=150μm for stage 1K8o=95μm for stage 2Reagents:isobutyl xanthate =200-300g/t dithiophosphate =20-35g/tmodified guar =50-100g/tMetallurgy:total PGM in concentrate =75-90g/t at 95%Cr₂O₃ PGM recovery =83%

①CMC,carboxymethyl    cellulose.

In   the   majority   of  operations,collector   consumption   is   relatively   high,especially   in   plants treating  high-chromium  ores.It  appears  that  PGM  concentrates  with  high  chromium  contents  are in  fact  related  to   a  high   collector  consumption,which  usually  results   from   entrapment  of  fine chromium  in  the  concentrate.In  fact,high  collector  consumptions  are  related  to  the  presence  of  clay-like  slimes,which  are known  to  consume  collectors.Recent  studies  conducted  on  high-chromium  ores  indicated  that collector   consumption   can  be   substantially   reduced(i.e.up   to   60%)by   using   a   suitable   slime depressant/dispersant

Related Solution

REO Minerals

7.6.1        Ore    and    Minerals    Containing    Rare    Earth    Oxide    Elements(REOE) There  are  about  250…

Lead and Zinc Ore

Lead and Zinc Ore 7.3.1   Natural   Minerals   of    Lead   and   Zinc    and…

Gold Ores

Gold Ores 7.4.1     Gold-Bearing Ores The  recovery  of  gold  from  gold-bearing  ores  depends  largely  on  the  nature  of  the  deposit,the mineralogy of the ore and the distribution of gold in the ore.The methods used for the recovery of gold consist of the following unit operations: (1)The gravity preconcentration method,which is used mainly for recovery of gold from placer deposits that contain coarse native gold.Gravity is often used in combination with flotation and/or cyanidation.…
Contact Information
  • ZHENGZHOU CITY , HENAN PROVINCE ,CHINA 450000
  • Email:info@oreprocessings.com
  • Phone&Whatsapp:+86 19888889999
Copyright © 2026 Oreprocessings. All Rights Reserved.